Chem. Ber. 107, 1028-1037 (1974)

Beiträge zur Chemie des Bors, LXIV1)

Über die Darstellung eines elektronenarmen Triaminoborans: Tris[N-(dimethylboryl)methylamino]boran

Heinrich Nöth* und Wolfgang Storch

Institut für Anorganische Chemie der Universität München, D-8000 München 2, Meiserstraße 1

Eingegangen am 5. Dezember 1973

Die SiN-Bindungen von $B[NCH_3-Si(CH_3)_3]_3$ werden in einer stark temperaturabhängigen Reaktion durch $(CH_3)_2BBr$ schrittweise gespalten. Es sind alle Glieder der Reihe $[(CH_3)_2B-CH_3N]_nB[NCH_3-Si(CH_3)_3]_{3-n}$ isolierbar, deren thermische Stabilität mit steigendem n sinkt. Die ¹H- und ¹¹B-NMR-Spektren der neuen Boranderivate werden diskutiert.

Contributions to the Chemistry of Boron, LXIV¹⁾

The Preparation of an Electron Deficient Triaminoborane: Tris[N-(dimethylboryl)methylamino]borane

The SiN bonds of $B[NCH_3 - Si(CH_3)_3]_3$ are successively cleaved by $(CH_3)_2BBr$. The reaction is strongly temperature dependent. All members of the series $[(CH_3)_2B - CH_3N]_nB[NCH_3 - Si(CH_3)_3]_{3-n}$ can be isolated. The stability against thermal decomposition decreases as n increases. The ¹H- and ¹¹B-n.m.r. spectra of the new borane derivatives are discussed.

Die kinetisch stabilen, reaktionsfreudigen Bis(dialkylboryl)amine zersetzen sich unter Alkylgruppenwanderung in Trialkylborane und Borazine²⁾. Ihre Zersetzungsschwelle wird durch sperrige, elektronenspendende Gruppen erhöht³⁾. Eine Stabilisierung erfolgt auch durch den Einbau des BNB-Skeletts in ein Ringsystem⁴⁾. Hierfür sorgt auch eine Gruppe, die die B-Atome des Diborylaminsystems in einen Heterocyclus einbezieht⁵⁾. Die Verbindungen 1 bis 3 dienen hierfür als Beleg. Hieraus kann man schließen, daß BN-Ketten relativ stabil sein könnten, wenn ein B:N-Verhältnis

¹⁾ LXIII. Mitteil.: I. Geisler und H. Nöth, Chem. Ber. 106, 1943 (1973).

4) R. Köster und K. Iwasaki, Advan. Chem. Ser. 42, 148 (1964).

²⁾ H. Nöth und H. Vahrenkamp, J. Organomet. Chem. 16, 337 (1969).

³⁾ H. Jenne und K. Niedenzu, Inorg. Chem. 3, 68 (1964).

⁵⁾ M. F. Lappert und G. Srivastava, Proc. Chem. Soc. (London) 1964, 120.

< 1 vorliegt, während sich Verbindungen mit B: N > 1 leichter zersetzen sollten. In der Tat sind die wenigen bisher bekannten BN-Ketten-Verbindungen mit Bor der Koordinationszahl 3 alle vom N-Überschuß-Typ^{6,7)}.

Die Umsetzung von $CH_3N[BCH_3-NCH_3-Si(CH_3)_2]$ mit $(CH_3)_2BBr$ liefert die instabile und daher noch nicht ausreichend charakterisierte siebengliedrige Kette $(CH_3)_2B-NCH_3-BCH_3-NCH_3-BCH_3-NCH_3-B(CH_3)_2$ vom N-Unterschußtyp. Sein Isomeres, das Tris[*N*-(dimethylboryl)methylamino]boran B[NCH_3-B(CH_3)_2]_3, könnte thermisch stärker belastbar sein, da dessen Stabilisierung zu einem Borazin aus sterischen und kinetischen Gründen gehemmt sein sollte.

Darstellung von [N-(Dimethylboryl)methylamino]boranen

Die unter schonenden Bedingungen durchführbare SiN-Spaltung⁸⁾ eignet sich nicht nur für die Darstellung einfacher Diborylamine²⁾, sondern auch zum Aufbau längerer Aminoboran-Ketten⁶⁾. Obschon die N-Atome im Tris[*N*-(trimethylsilyl)methylamino]boran (4) sterisch gut abgeschirmt sind, werden alle drei SiN-Bindungen von Dimethylborbromid gespalten⁹⁾. Bei Raumtemperatur liefert die exotherme Reaktion außer leichtflüchtigem B(CH₃)₃ und (CH₃)₃SiBr ein sehr schwer auftrennbares Produktgemisch. Durch Vorgabe der Stöchiometrie und Kontrolle der Temperatur wird jedoch ein gezielter und schrittweiser Ersatz der (CH₃)₃Si- gegen (CH₃)₂B-Gruppen erreicht. Danach läuft die Reaktion (1) bei 10°C in etwa 1 h quantitativ ab. Die zweite SiN-Bindung von 4 läßt sich bei -20° C gemäß Gleichung (2) spalten. Ihr schließt sich die Trennung der dritten an, die bei -30° C durchzuführen ist. Unter diesen Bedingungen entstehen die Dimethylborylmethylaminoborane 5, 6 und 7 praktisch quantitativ.

5 ist der erste Vertreter eines "unsymmetrischen" Diborylamins, 6 und 7 zählen zu den N-Unterschuß-Aminoboranketten. Die farblosen, viskosen Verbindungen sind nur im Hochvakuum ohne merkliche Zersetzung destillierbar. Zunehmende Belastung

⁶⁾ H. Nöth und J. M. Sprague, J. Organomet. Chem. 22, 11 (1970).

⁷⁾ I. B. Atkinson, D. B. Clapp, C. A. Beck und B. R. Currell, J. C. S. Dalton 1972, 182.

⁸⁾ O. J. Scherer, Organomet. Chem. Rev., Sect. A 3, 281 (1968).

⁹⁾ Für SiN-Spaltungsreaktionen diskutiert man häufig einen Additions-Eliminierungsprozeß, gemäß dem das Molekül EX_n elektrophil am Stickstoffatom angreift. Der Adduktbildung folgt dann die Übertragung der nucleophilen Gruppe X auf den Silylrest unter Lösen der Si-N-Bindung⁸⁾. Aus sterischen Gründen sollte dieser Mechanismus bei 4 nicht möglich sein. Hier könnte man erwägen, daß zunächst das Br-Atom des (CH₃)₂BBr die Trimethylsilylgruppe angreift und unter Lösen der SiN-Bindung die (CH₃)₂B-Gruppe auf das N-Atom überträgt.

des zentralen Boratoms mit N-(Dimethylboryl)methylamino-Gruppen (steigendes B:N-Verhältnis) erhöht die Zersetzungsgeschwindigkeit; daher entbindet zwar 7, nicht aber 5 bei 50°C Trimethylboran¹⁰.

Die monomeren Verbindungen werden von Luftsauerstoff langsam oxidiert. Sie sind jedoch weniger empfindlich als (CH₃)₂BNHCH₃. Dies gilt qualitativ auch für die Hydrolyse. Sie führt zu Methylamin, Borsäure, Dimethylborsäure und Hexamethyldisiloxan.

Kernresonanzspektroskopische Untersuchung

Die [*N*-(Dimethylboryl)methylamino]borane sind geeignete Modellverbindungen, um die bereits entwickelten Vorstellungen¹¹⁻¹⁴⁾ über den Einfluß elektronischer und sterischer Faktoren insbesondere auf δ^{11} B und δ^{14} N zu überprüfen. Tab. 1 enthält die gemessenen chemischen Verschiebungen für die Kerne ¹H, ¹¹B und ¹⁴N.

Die beiden nichtäquivalenten Boratome in 5--7 liefern zwei gut getrennte Kernresonanzsignale im ¹¹B-NMR-Spektrum. Die zugehörigen Flächen entsprechen der Zahl äquivalenter B-Atome. Das von drei Stickstoffatomen umgebene zentrale B-Atom wird mit zunehmender Zahl von Dimethylborylgruppen immer schlechter abgeschirmt. Demzufolge ist die für die BN3-Gruppierung gemessene chemische Verschiebung in 7 die bisher bei tiefstem Feld liegende. Als "normaler" Erwartungsbereich gilt -20 bis -28 ppm^{11,12,15}). Der Ersatz einer CH₃-Gruppe je (CH₃)₂N-Gruppe im Tris(dimethylamino)boran durch die Trimethylsilylgruppe verursacht einen Abschirmungsverlust von 6.5 ppm. Wir führen ihn vor allem auf eine verminderte BN- π -Wechselwirkung als Folge des sterischen Effekts der voluminösen (CH₃)₃Si-Gruppe zurück. Bereits in $B[N(CH_3)_2]_3$ liegen die C-Atome nicht mehr in der BN₃-Ebene. Vielmehr sind BN₃- und C₂NB-Ebenen um $\approx 32^{\circ}$ gegeneinander verdrillt¹⁶). Diese Verdrillung wird durch den (CH₃)₃Si-Rest sicher verstärkt. Die dadurch verminderte Wechselwirkung der p,-Orbitale von B und N führt zu einer geringeren π -Ladungsdichte am Bor, die sich in einer geringeren Abschirmung äußert, da π -Ladungsdichte und δ^{11} B linear miteinander korrelieren¹⁴⁾.

Die Substitution von Trimethylsilylgruppen in 4 durch $(CH_3)_2B$ -Reste erbringt eine geringe sterische Entlastung. Dabei erfahren die B-Atome der Dimethylborylgruppe in 5 und 6 eine etwas bessere Abschirmung als in $(CH_3)_2B$ -NCH₃-Si $(CH_3)_3$. Dies ist ein weiteres Argument zu Gunsten einer Konkurrenz der B- und Si-Atome in Silylaminoboranen um das freie Elektronenpaar des Stickstoffs¹⁷⁾, desgleichen für die Verdrillung der CNB₂-Ebenen gegen die BN₃-Ebene. In 7 nähert sich der 311 B-Wert dem der Diborylamine^{11,18,19)}. Mit sinkendem N:B-Verhältnis nehmen demzufolge die π -Ladungsdichten an den B-Atomen ab.

¹⁰⁾ Über die Pyrolyse von 5, 6 und 7 berichten wir nach Abschluß der Untersuchungen.

¹¹⁾ H. Nöth und H. Vahrenkamp, Chem. Ber. 99, 1049 (1966).

¹²⁾ W. Beck, W. Becker, H. Nöth und B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).

¹³⁾ H. Nöth und B. Wrackmeyer, Chem. Ber. 106, 1145 (1973).

¹⁴⁾ J. Kroner, D. Nölle und H. Nöth, Z. Naturforsch., i. Druck.

¹⁵⁾ G. R. Eaton und W. N. Lipscomb, NMR-Studies of Boron-Hydrides and Related Compounds, W. A. Benjamin Inc., New York 1969.

¹⁶⁾ A. H. Clark und G. A. Anderson, Chem. Commun. 1969, 1082.

¹⁷⁾ H. Nöth, W. Tinhof und B. Wrackmeyer, Chem. Ber. 107, 518 (1974).

¹⁸⁾ H. Vahrenkamp, Dissertation Univ. München 1967.

¹⁹⁾ W. Storch, Dissertation Univ. München 1974.

Verbindung	8 ¹¹ B/p Ba	рш Вр	814N/ppm	CH ₅ Si	B(CH ₃) ₂	8 ¹ H/ppm B-NCH ₃ -B	Si-NCH ₃ -B N	e !	Lösungs- mittel
[(CH ₃) ₃ Si – NCH ₃] ₃ B (4)	- 33.8 b)		+ 321 ci	-0.083			-2.47		CH ₂ Cl ₂
$[(CH_3)_{3S} - NCH_3]_2B^a - NCH_3 - B^b(CH_3)_2$ (5)	- 34.5	- 50.3	+269	-0.07	-0.29	-2.64	-2.55		CH ₂ Cl ₂
$(CH_3)_3Si - NCH_3 - Ba[NCH_3 - Bb(CH_3)_2]_2 (6)$	36.5	-\$1.7	+ 265	-0.13	0.37	-2.63	-2.55		CH ₂ Cl ₂
Ba[NCH ₃ – Bb(CH ₃) ₂] ₃ (7)	-37.8	- 54.1	+253		-0.40	-2.77			CH2Cl2
(CH ₁) ₁ Si – NCH ₃ – B (CH ₃) ₂	51.2 bi		+ 287 c)	-0.193	-0.37 d		-2.67		CH-CI-
$(CH_{3})_{2}B - NCH_{3} - B(CH_{3})_{2}$	-58.5 d)		+ 253	I	-0.57	-2.87			CHO
(CH ₃) ₂ B-NHCH ₃	-45.7 di		+ 282 ci		-0.25 ci		-2.6	54 de)	CH-CI-
$(CH_3)_2B - N(CH_3)_2$	-44.61)		+296c		-0.20		-2.7	5	7
[(CH ₃) ₂ N] ₃ B	—27.3e)		+366				-2.5	50 8)	

1974

Der für 7 gemessene δ^{14} N-Wert liegt zwischen dem für $(CH_3)_2B-N(CH_3)_2$ und $[(CH_3)_2B]_2NCH_3^{19})$. Folglich spricht auch δ^{14} N auf das N: B-Verhältnis im gleichen Sinne wie $\delta^{11}B$ an. Die beobachteten chemischen Verschiebungen stützen die angenommenen Strukturen. Bedingt durch relativ große Halbhöhenbreiten der ¹⁴N-Signale gelang es nicht, die für **5** und **6** erwarteten zwei Signale voneinander zu trennen. Daher entsprechen die in Tab. I angegebenen Werte sicher nicht der wahren Lage der beiden Signalmaxima. Sie spiegeln jedoch den Einfluß der R₂B-Gruppe wider.

Keinerlei Überraschungen bieten die ¹H-NMR-Spektren. Lage und Flächen erlauben eine zweifelsfreie Zuordnung entsprechend den vorgeschlagenen Strukturen. Die Einführung der $(CH_3)_2B$ -Gruppe führt in der Reihe 5, 6, 7 zu einer Tieffeldverschiebung der Signale; jedoch wird das $B-NCH_3-Si$ -Signal nur wenig beeinflußt. Dies kann man, wie die $\delta^{11}B$ - und $\delta^{14}N$ -Daten lehren, mit einer zunehmenden Verarmung der Systeme an π -Elektronendichte interpretieren. Somit zählt 7 ebenso wie die Tetraorganyldiborylamine zu den elektronenarmen Aminoboranen.

Während in den Aminodimethylboranen $(CH_3)_2B - NHCH_3$ und $(CH_3)_2B - NCH_3 - Si(CH_3)_3$ die beiden CH_3B-Gruppen verschiedene chemische Umgebung haben und daher zwei ¹H-NMR-Signale liefern, fanden wir in 5-7 bei Raumtemperatur jeweils nur ein einziges Signal. Demzufolge ist die Rotation um die terminale BN-Bindung und die zentrale in Analogie zu $(CH_3)_2B - NCH_3 - B(CH_3)_2$ und in Übereinstimmung mit nur schwachen BN- π -Wechselwirkungen nicht gehemmt. Bei -68°C spalten die ¹H-NMR-Signale der Verbindung 4 im Verhältnis 1:2 auf, gleiches gilt für 7. Danach friert die Rotation um die zentralen BN-Bindungen eher ein als die der terminalen²⁰).

Massenspektrometrische Untersuchung

Die Massenspektren der Verbindungen 5-7 (vgl. Tab. 2) sind durch Abwesenheit des Molekülions charakterisiert. Vergleichsweise intensiv sind hingegen die Ionen der Masse M – 15. Dies spricht für eine Abspaltung der Methylgruppe vom B-Atom, da so eine bessere Ladungsstabilisierung erfolgen kann als bei einer Abspaltung einer N-ständigen Methylgruppe. Außerdem ist für 6 und 7 die Bildung des B(CH₃)₃-Ions typisch. Dieses könnte sich aus dem Molekülion durch Umlagerung unter Abspaltung eines (BN)₂-Vierringes bilden. Andererseits kann die Ladung auch

vom Vierring übernommen werden, und $(CH_3)_2B\dot{C}H_2$ wird abgespalten. M – 55lonen dienen hierzu als Beleg; diese Fragmentierung ließ sich durch metastabile Peaks nicht absichern.

²⁰⁾ Aus apparativen Gründen war die Aufnahme der ¹H-NMR-Spektren unter -68°C nicht möglich. Untersuchungen bei tieferen Temperaturen an elektronenreichen und elektronenarmen Diborylaminen sollen Einblicke in das Rotationsverhalten erbringen.

Mit steigendem Si-Gehalt der Verbindungen übernimmt das $(CH_3)_3Si^+$ -Ion die Rolle des Basissignals. Weiterhin wird aber $B(CH_3)_3^+$ neben $Si(CH_3)_4^+$ beobachtet. Beide können bei 5 durch Methylgruppenübertragung in Analogie zum oben angeführten Prozeß entstehen.

In Tab. 2 finden sich die gefundenen Fragment-Ionen. Die Zuordnung wird durch Vergleich von beobachteten mit berechneten Isotopenmustern wesentlich erleichtert^{*)}. Nur in wenigen Fällen ließ sich der Abbauweg über metastabile Peaks festlegen.

Bei den vorliegenden Untersuchungen erfreuten wir uns der Unterstützung durch die Deutsche Forschungsgemeinschaft, den Fonds der Chemischen Industrie (Stipendium an G. M.) und die Badische Anilin- & Soda-Fabrik AG, außerdem durch Herrn Dr. B. Wrackmeyer, Frau D. Ewald, Frau G. Hanatschek, Fräulein G. Bienlein und Herrn K. Schönauer, die bei der Aufnahme der Spektren und der Ausführung der Analysen halfen. Ihnen sei auch an dieser Stelle herzlich gedankt.

Experimenteller Teil

Die hohe Luft- und Feuchtigkeitsempfindlichkeit der Verbindungen, insbesondere von Dimethylborbromid, erforderte das Arbeiten in einer Hochvakuumapparatur oder unter trockenem Stickstoff. Alle Geräte sind vor Gebrauch i. Vak. auszuheizen.

Tris[N-(trimethylsilyl)methylamino]boran (4) erhielten wir nach Nöth und Sprague⁶⁾ aus Borbromid und Heptamethyldisilazan. Dimethylborbromid entstand aus Tetramethylzinn und Borbromid²¹⁾.

Die Elementaranalysen wurden im mikrochemischen Laboratorium des Instituts durchgeführt. Zur Aufnahme der Kernresonanzspektren standen ein A60- und ein HA-100-Kernresonanzspektrometer von Varian zur Verfügung.

[N-(Dimethylboryl) methylamino]bis[N-(trimethylsilyl) methylamino]boran (5): 4.9 ml (4.2 g, 13.2 mmol) B[NCH₃Si(CH₃)₃]₃ (4) wurden unter kräftigem Rühren bei +10°C mit 1.28 ml (1.60 g, 13.2 mmol) (CH₃)₂BBr tropfenweise versetzt. Vom danach schwach getrübten Gemisch kondensierte man nach Rühren über Nacht alles Flüchtige bei 10⁻¹ Torr ab. Der Rückstand ging bei der fraktionierten Destillation i. Hochvak. einheitlich bei 50°C/5 · 10⁻³ Torr über. Ausb. 3.7 g 5 (98%). 5 ist eine farblose, viskose, relativ wenig feuchtigkeitsempfindliche Verbindung. Sie zeigte nach 4 Wochen keinerlei Anzeichen einer Zersetzung. Mit den üblichen organischen Lösungsmitteln mischt sie sich gut.

Bis[N-(dimethylboryl)methylamino][N-(trimethylsilyl)methylamino]boran (6): Unter kräftigem Rühren (Magnetrührer) tropfte man zu 3.30 g B[NCH₃Si(CH₃)₃]₃ (4) (10.4 mmol) bei 10°C 1.0 ml (CH₃)₂BBr. Nach Abklingen der Reaktion wurde dieselbe Menge (CH₃)₂BBr (insgesamt 2.5 g (20.7 mmol)) bei -20° C zugefügt. Zur Vervollständigung der exothermen Reaktion diente 1stdg. Rühren bei -20° C. Danach kondensierte man alles bei -10° C Flüchtige ab (fast nur (CH₃)₃SiBr) und unterwarf den flüssigen, farblosen Rückstand der Destillation i. Hochvak. Sie lieferte 2.6 g (99%) 6 vom Sdp. 39°C/10⁻² Torr. Die Verbindung

^{*)} Die Berechnung der Isotopenmuster erfolgte mit einem von D. Nölle entwickelten Programm auf der TR 440 des Leibniz-Rechenzentrums der Bayer. Akademie der Wissenschaften.

²¹⁾ P. J. Paetzold und H. J. Hansen, Z. Anorg. Allg. Chem. 345, 79 (1966).

zeigte in 14 Tagen keine NMR-spektroskopisch nachweisbare Zersetzung. Nach 4 Wochen hatte sich die farblose Flüssigkeit leicht getrübt.

C₁₀H₃₀B₃N₃Si (252.9) Ber. C 47.49 H 11.96 B 12.82 N 16.62 Gef. C 47.13 H 11.50 B 12.78 N 16.10 Mol.-Masse: kryoskop. in Benzol 244; massenspektrometr. 253, 238 (M - 15)

Tab. 2. Massenspektren der [N-(Dimethylboryl)methylamino]borane 5, 6 und 7a)

[(CH	$(3)_3Si-NC$	H_3 ₂ $B-NCH_3$	$-B(CH_3)_2$ 5	
<i>m</i> /e ^{b)}	relat. Intensität	Isotopen- muster	Summen- formel (m [⊕])	Zuordnungsvorschlag ^{c)}
270	78.0	B ₂	C ₁₀ H ₃₀ B ₂ N ₃ Si ₂	$[(CH_3)_3Si - NCH_3]_2B - \overset{\oplus}{N}CH_3 = BCH_3$
215	23.0	B ₁	C8H24BN2Si2	[(CH ₃) ₃ SiNCH ₃] ₂ [#] B
214	11.0	B ₁	C8H23BN2Si2	
199	24.5	B ₁	C7H20BN2Si2	
198	16.0	B ₂	C7H22B2N3Si	
196	13.5	B ₂	C7H20B2N3Si	
182	26.5	B ₂ oder	C7H20B2N2Si C6H18B2N3Si	
167	10.5	B ₂	C ₆ H ₁₇ B ₂ N ₂ Si	
160	7.0		C ₆ H ₁₈ NSi	[(CH₃)₃Si]₂ [⊕] N
143	10.5	B ₁	C ₆ H ₁₈ BNSi	(CH ₃) ₂ B- [⊕] NCH ₃ -Si(CH ₃) ₃
141	14.0	Bı	C5H14BN2Si	
127	15.5	Bı	C4H12BN2Si	
100	8.0	B ₁		
98	10.5	B ₁	C3H9BNSi	
88	15.5		C ₄ H ₁₂ Si	(CH₃)₄Si [⊕]
86	9.5	B1	C4H13BN	
73	100.0		C ₃ H ₉ Si	(CH ₃) ₃ Si⊕
59	29.0		C ₂ H ₇ Si	(CH₃)₂SiH
56	17.0	B ₁	C ₃ H ₉ B	(CH ₃)₃B [⊕]
45	16.0		CH₅Si	(CH ₃) [⊕]
41	7.5	B _t	C ₂ H ₆ B	(CH ₃)₂ [⊕]
28	23.0		Si	

Tab. 2 (Fortsetzung)

(CH)	3)3Si—NCH	$I_3 - B(NCH_3)$	$-B(CH_3)_2]_2 6$	
m/e	Intensität	muster	formel (m⊕)	Zuordnungsvorschlag
				$\mathbf{\hat{N}CH_3} = BCH_3$
238	10.0	B ₃	C9H27B3N3Si	$(CH_3)_3Si - NCH_3 - B'$ NCH ₃ - B(CH ₃) ₂
			oder	$(CH_3)_2Si = \overset{\bigoplus}{NCH_3} - B[NCH_3 - B(CH_3)_2]_2$
224	5.0	B ₃	C8H25B3N3Si	
198	83.5	B ₂	C7H22B2N3	$\begin{array}{c} H_{\chi} CH_{3} & CH_{3} \\ H_{3} CH_{3} & Pi CH_{3} \\ H_{3} CV_{S1} & CH_{3} \\ (CH_{3})_{2} & H \end{array} \xrightarrow{(CH_{3})_{3}S_{1} - NCH_{3} - B} \begin{array}{c} CH_{3} \\ Pi \\ P$
182	43.5	B ₂	C ₆ H ₁₈ B ₂ N ₃ Si	
167	14.0	B ₂ od	C6H17B2N2Si er C5H15B2N3Si	
164	16.0	B ₃	C ₆ H ₁₇ B ₃ N ₃	_
143	45.2	B ₁	C ₆ H ₁₈ BNSi	$(CH_3)_2B - \overset{\bullet}{N}CH_3 - Si(CH_3)_3$
127	22.5	B ₁	C4H12BN2Si	
109	8.0	B ₂	$C_4H_{11}B_2N_2$	$\begin{array}{c} & \begin{pmatrix} C & H_{2} \\ H_{3} \\ H_{3} \\ C & H_{3} \\ \end{pmatrix} \\ & \begin{pmatrix} C & H_{3} \\ C & H_{3} \\ \end{pmatrix} \\ \end{array}$
88	59.0		C4H12Si	(CH ₃) ₄ Si
83	8.0	B ₁	C ₃ H ₈ BN ₂	
73	78.5		C3H9Si	(CH ₃) ₃ Si
71	21.0	Bı	$C_2H_8BN_2$	
59	34.5		C ₂ H ₇ Si	(CH ₃)₂ [®] iH
56	100.0	Bı	C ₃ H ₉ B	(CH ₃) ₃ ₿
43	67.5		CH ₃ Si	(CH₃)Ši
41	26.0	Bı	C ₂ H ₆ B	(CH ₃)₂ [⊕] B
28	34.5		Si oder N2	

B(NO	$CH_3 - B(CH)$	[3) ₂] ₃ 7		
m/e	relat. Intensität	Isotopen- muster	Summen- formel (m [⊕])	Zuordnungsvorschlag
				$\overset{\oplus}{N}CH_3 = BCH_3$
206	41.0	B ₄	$C_8H_{24}B_4N_3$	$(CH_3)_2B - NCH_3 - B$
192	7.5	B ₄	$C_7H_{22}B_4N_3$	
166	7.0	B3	C6H19B3N3	Сп ^а ј ³ в-хсп ² -в ^с б. н ^с сп ³
164	35.5	B3	C ₆ H ₁₇ B ₃ N ₃	СП ₃)2B-NCП ₃ -В <mark>С</mark> (СП ₃)2B-NCП ₃ -ВС (СП ₃)2B-NCП ₃ -ВС (СП ₂)2B-NCП ₃ -ВС (СП ₂)2B-NCП ₃ -ВС (СП ₂)2B-NCП ₃ -ВС (СП ₃)2B-NCП ₃ -ВС (П ₃)2B-NCП ₃ -ВС
150	29.0	B3	C5H15B3N3	Чз н₅св∗∛сн₃-в сн₃ сн₃
135	15.0	B ₃	C4H12B3N3	
126	20.0	B ₂	$C_4H_{14}B_2N_3$	
109	10.0	B ₂	C4H11B2N2	$H_{3}C-B \begin{cases} GH_{2} \\ GH_{3} \\ GH_{3} \\ GH_{3} \end{cases}$
95	18.5	B ₂	C3H9B2N2	
83	46.0	B	C ₃ H ₈ BN ₂	
71	41.0	B ₁	C ₂ H ₈ BN ₂	
56	100.0	Bı	C ₃ H ₉ B	(CH ₃) ₃ [⊕] B
54	12.5	Bı	C ₂ H ₅ BN	$CH_3B = \overset{\oplus}{N} = CH_2$
41	88.5	Bı	C ₂ H ₆ B	(CH ₃) ₂ [⊕] B
28	59.0		N_2 oder CH_2N	$HC = NH$ oder \mathring{N}_2

a) Aufgenommen mit 70 eV/30°C.
b) Massenzahl bezogen auf das Isotop ¹¹B.
c) Die Zuordnung der Massensignale wird durch die Isotopenmuster, bedingt durch die Gegenwart von 20% ¹⁰B und 80% ¹¹B, für Fragmente mit 1, 2, 3 bzw. 4 Boratomen wesentlich erleichtert, führt jedoch meistens nicht zu eindeutigen Strukturvorschlägen.

Tris/ N-(dimethylboryl)methylamino]boran (7) *): Auf 9.60 g (30.2 mmol) B[NCH₃Si(CH₃)₃]₃ (4) kondensierte man i. Hochvak. 3.88 g (CH₃)₂BBr (32.1 mmol). Nach Auftauen ließ man unter kräftigem Rühren bei $+10^{\circ}$ C abreagieren. Danach wurde jeweils die gleiche Menge (CH₃)₂BBr (insgesamt 3 mal 3.88 g) hinzukondensiert und die Reaktion bei -15° C bzw. -30° C weitergerührt. Nach jeweils 1 stdg. Nachrühren bei der betreffenden Temperatur kondensierte man bei -10° C alles Flüchtige rasch ab ((CH₃)₃SiBr, überschüssiges (CH₃)₂BBr) und unterwarf den Rückstand der fraktionierten Destillation. Bei $34-35^{\circ}$ C/10⁻² Torr gingen 5.4 g (81%) 7 als farblose, viskose, oxidations- und hydrolyseempfindliche Flüssigkeit über.

Gegen Ende der Destillation schieden sich farblose Nadeln in der Silbermantelkolonne ab. Laut ¹¹B-NMR bestanden sie vor allem aus Hexamethylborazin ($\delta^{11}B - 36.3$ ppm, Lit.¹⁵) -35.8 ppm), jedoch zeigte das ¹¹B-NMR-Spektrum Signale geringerer Intensität bei -46.3 und -31.5 ppm). 7 zersetzt sich langsam bei 35°C, rascher bei 50°C, wobei Trimethylboran freigesetzt wird. Gealterte Proben können sich daher beim Öffnen der in abgeschmolzenen Ampullen aufbewahrten Verbindung in Kontakt mit Luft entzünden. Bei -20°C aufbewahrt ist 7 mindestens 1 Woche stabil.

> C₉H₂₇B₄N₃ (220.6) Ber. C 49.01 H 12.34 B 19.60 N 19.05 Gef. C 48.44 H 11.77 B 19.1 N 19.31 Mol.-Masse: kryoskop. in Benzol 224; massenspektrometr. 206 (M - 15)

Tab. 3. IR-Spektroskopische Daten der [N-(Dimethylboryl)methylamino]borane 5, 6 und 7a)

 $((CH_3)_3Si - NCH_3)_2B - NCH_3 - B(CH_3)_2$ (5): 2952 st, 2895 st, 2820 m, 1465 st, br, 1436 st, 1350 sst, br, 1308 sst, br, 1247 sst, 1196 w, 1144 st, 1104 st, 1034 st, 1018 m, sh, 936 m, 848 st, sh, 837 sst, 760 m, sh, 752 m, 680 m, 626 w, 615 w, 357 cm⁻¹ w.

 $(CH_3)_3Si - NCH_3 - B(NCH_3 - B(CH_3)_2)_2$ (6): 2952 st, 2920 st, 2896 st, 2827 w, 1470 st, 1436 st, 1364 st, sh, 1344 sst, br, 1305 st, 1262 m, 1252 st, 1194 w, 1143 m, 1106 st, 1081 st, 1037 m, 1013 w, 932 w, 855 st, 838 st, 765 w, sh, 755 w, 683 w, 625 w, 474 w, 372 cm⁻¹ w.

 $B[NCH_3 - B(CH_3)_2]_3$ (7): 2985 st, sh, 2956 st, 2920 st, 2900 st, 2826 w, 1469 st, 1367 st, sh, 1338 sst, br, 1316 sst, br, 1278 m, sh, 1253 w, 1196 w, 1135 w, sh, 1103 sst, 1085 sst, 1034 w, 927 w, 847 w, 760 w, 662 w, 629 w, 612 cm⁻¹ w.

a) Die Spektren wurden als Film auf einem Gitterspektrometer Modell 21 von Perkin-Elmer aufgenommen.

*) Für die eifrige Mitarbeit von Günter Muckle bei der Darstellung von 7 sei an dieser Stelle besonders gedankt.

[469/73]